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1. Introduction 
The Front End Controller (FEC) is an interface between CMS Timing, Trigger 

and Control system (TTC) and the front-end detector electronics. Its main function is to 
provide correct timing and trigger signals to the front-end event pipeline delays and event 
buffering logic. In addition, the FEC has to be able to generate the necessary initialization 
and setup commands and provide the means for monitoring and diagnostics of the front-
end hardware. This is an attempt to write a coherent document describing the Pixel FEC.  

2. Requirements 
• Basic CMS requirements (as per current CMS documents) 

a. Provide correct timing and trigger signals to the front-end event 
pipeline delays and event buffering logic 

b. Generate necessary initialization and setup commands 

c. Provide necessary means for monitoring and diagnostics of the front-
end hardware 

• Specific CMS Pixel requirements 

a. Continuous setup of the front-ends during trigger inactivity intervals to 
recover from Single Event Upset (SEU) effects 

b. Non-standard 40 MHz serial communication protocol 

3. Block-diagram 
The FEC is located in the CMS control room and connected to the detector 

electronics by optical fibers and digital optical links[1] on the detector side. On the FEC 
end, a DTRx4[2] optical module is used. The FEC communicates with the TTC system via 
optical fiber as well and uses a TTCrq daughter board developed by CERN[3] as an 
interface. The block-diagram of the proposed FEC design is presented in Fig. 1. In this 
example, a standard 9U x 280 mm VME card is assumed as a housing. Different sized 
VME cards could be used, but that would affect the number of channels. A density of 12 
channels per card would allow up to ~200 FEC channels per VME crate. The card would 
use an extended addressing A32:D32 VME slave interface. The timing signals and 
broadcast commands from TTC system are decoded by the TTCrq board and distributed 
on the Timing Bus between FEC channels. A standard I2C interface is used to control the 
TTCrq board. A JTAG connector on the card provides an easy option for in-circuit re-
programmability. The expectation is that there will be a little or no space left on the front 
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panel for LED indicators. Therefore, internal status registers of the FEC should provide 
enough status information to overcome this limitation. 

4. General functionality 
The expectation is that the FEC crates will be equipped with a networked VME 

processor or PCI to VME interface. In any case, a running operating system (e.g. 
VxWorks or Windows) will introduce significant speed and reaction time limitations on 
communication with the FEC. It will be very difficult to guarantee that in this 
configuration a processor could reliably deliver necessary data synchronized with the 
accelerator beam structure to multiple FECs in the VME crate. Because of that problem, a 
hardware controller with a memory is proposed to periodically send data to the front-
ends. The following description is based on the use of the networked VME processor in 
the FEC crate. 

One can envision several major functional tasks of the FEC. After power up of the 
front-end electronics, the FEC has to generate “cold start” commands for the pixel 
Readout Chips (ROC), Token Bit Manager (TBM) chips and other programmable front-
end hardware. This can be done under software control by the VME processor in the 
crate. It is presumed that the VME processor will be able to obtain the necessary 
information from a database via network connection (Ethernet). This process has no 
requirements of beam synchronization and practically is unlimited in time (if less than  
5..10 minutes). It is possible that FEC will check the status and receive some other 
information from the front-end during this procedure. This mode of operation is called 
INITIALIZATION. 

After initialization is complete, the FEC will continuously generate 40 MHz clock 
signal, but will block embedded TTC commands. B-G0 commands generated by TTC 
system will be encoded as L1 decisions and recognized by the Pixel TBM chips. There 
are no requirements for beam-synchronized processes in this mode. The FEC may send 
commands at arbitrary time to TBMs and other front-end hardware and receive responses 
to these commands. This mode of operation is called STOP. 

The next mode of operation is called RUN since it corresponds to a normal data 
taking. In this mode the FEC will pass through encoded TTC broadcast commands and 
Level 1 accepts. One of the major features of the RUN mode is the ability to enable and 
disable the ROC refresh cycle. The expectation is that the ROCs will require continuous 
re-setting of the pixel thresholds during beam operations. It is possible that some other 
ROC registers will require refreshing as well. It is undesirable to refresh pixel settings 
during actual data processing in the ROC, therefore, refreshing during marked by TTC 
trigger gaps (“private gaps” and “private orbits”) is considered as possible solution to 
avoid changing pixel setting while processing L1 accepts.  

The algorithm of refreshing ROC settings must be simple and efficient. The first 
approach will be to cycle through all the necessary settings periodically using the 
available time gaps in the accelerator beam structure mentioned above. Some estimates 
show that it will take up to 15..30 minutes to cycle through all the pixels in the front-ends 
(assuming one private orbit per second). Because of the beam synchronization 
requirement for the ROC refresh cycle, an arbitrary command to the front-end cannot be 
issued without disabling the refresh cycle. This can be accomplished by interrupting 
refreshing cycle for a short period of time and issuing command to the front-end. We 
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Fig. 1 Block-diagram of the Pixel Front End Controller 

assume here that communications with other electronics not included in the data path 
(e.g. DCU) will not disturb data taking. After the command is processed, the refreshing 
cycle will be resumed. This can be used for periodic readout of the monitoring 
information from the front-ends. 

In the absence of a TTC connection, the TTCrq will generate the LHC clock 
frequency internally. This mode of operation is called LOCAL and can be used for 
diagnostic purpose and stand-alone operations. There are no external trigger decisions 
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received in this mode, but a fixed sequence of Calibrate/L1 Accept signals could be 
generated locally if desired. Summarizing, there are four modes of operation: 

• Initialization 
• Stop 
• Run 
• Local 

 The associated VME crate software provides switching between different modes. 
The FEC status register should show current status of the module. 

4. FEC channel interface 
The FEC communicates to the TBM chips, the ROCs , the PLL chips, the opto-

hybrids and the DCU chips. The TBMs and ROCs designed by CMS Pixel group require 
a custom high-speed communication protocol, which uses two differential pairs for serial 
clock and data and runs at the main TTC clock frequency of 40 MHz.  This protocol has 
similar to the I2C standard

[4]
 start and stop definitions and uses 10 bit data words with the 

5th and 10th bits representing inverted 4th and 9th bits respectively, and the remaining bits 
representing an 8-bit data byte. The first data word in this protocol comprises of hub and 
port addresses, which define an addressed device(s). The TBM can be directly addressed 
by the FEC using this protocol. The ROC chips associated with a particular TBM chip 
can be addressed using a specific port address within that TBM. Note that current version 
of the ROC has only write-only registers and cannot be read back. The TBM chip has the 
read back functionality as described in the I2C standard. 

The PLL chips, opto-hybrids and DCU chips require a standard I2C 
communication protocol, which is provided by using a custom slow hub chip. The slow 
hub has a specific hub address to which it responds at the end of transmission of the first 
data word in the command.  According to the current proposal[5], the slow hub chip will 
decode device address transmitted at 40 MHz clock speed and multiplex following 
standard I2C command generated by the FEC to the standard I2C device. It will receive 
following device’s response and direct it backward to the FEC.  A clock frequency for the 
slow devices is set at 40/64 MHz = 625 kHz. In order to overcome low frequency cutoff 
of the optical links, the data and clock for slow devices are modulated using bi-phase 
encoding at 40 MHz. The proposed combination of two protocols is not very reliable and 
has to be improved (see Appendix A for details). The design of the FEC channel interface 
is based on a programmable logic and, in general, is not affected by changes in 
communication protocol, which could be implemented at a later time. 

A block-diagram of one channel FEC interface is shown in Fig. 2. Each channel 
has a serial transmitter and serial receiver with associated logic. Serial data and clock are 
transmitted in both directions. Transmission of serial clock and data in both directions is 
widely used by other CMS sub-systems and is a proven industry standard. The serial 
receiver has a small FIFO memory to store response information from the front-end until 
the software can read it out. It is preferable to avoid storage of multiple responses in the 
FIFO to simplify software requirements.  
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Fig. 2 One channel FEC interface 

The transmitter logic can generate commands received from two sources: single 
command registers and command memory. Single command registers are used to perform 
single control commands (e.g. Read) that require a response from the receiver. This could 
be a request of status information or DCU readings. The other commands that do not 
require response from the receiver could be generated by either single command register 
or command memory. The command memory is also used to refresh ROC settings. In this 
case commands can only be generated at certain times synchronously with accelerator 
activities. The use of timing bus signals to synchronize FEC commands to the accelerator 
can be enabled or disabled by a bit in the control register.  

The memory controller will cycle through the portion of the memory determined 
by a special register, repeating all the stored commands. The size of the memory should 
be large enough to accommodate all the necessary commands for the ROCs connected to 
one FEC channel. The contents of the memory will be loaded during the initialization 
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phase, but can be modified when necessary. It may be necessary to use DMA mode of the 
VME master to speed up the process of loading all the memories on the FEC card. 

5. FEC registers 
The definition of the control and status registers can be finalized when 

programmable logic is complete. 

6. FEC setup 
The setup procedure is design dependent and can be finalized after design of the 

programmable logic is complete. 

7. FEC software 
To be defined later. 
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Appendix A 
B.Baldin 
12/05/03 

Notes on Pixel FEC communication protocol 
Initial requirements: 

1. Down link (DTRx4 => DOH) 

• Use 40 MHz clock frequency for data transmission 
• Use 4b/9b data bits inversion to prevent reset detection by DOH 
• When not active, send stops continuously to maintain OL integrity 
• Use first byte to address fast/slow hubs 

2. Up link (DOH => DTRx4) 

• Use 40 MHz clock frequency for data transmission 
• Send hub address to FEC in response to every command 
• Do not use 4b/9b data bits inversion 
• When not active, send stops continuously to maintain OL integrity 

The current implementation of the readout chip (PSI46) requires 4b/9b data bits 
inversion. Because of the presence of the standard I2C devices (TPLL, LD, DCU), the 
proposed communication protocol is very complicated (requires two different encoding 
mechanisms for fast and slow hubs) and unreliable. It has potential pitfalls that may 
create serious problems during debugging and running of the system. The only advantage 
of this approach is simplification of the slow hub design. 

Another approach will be to simplify protocol to only one encoding scheme 
(4b/9b) and implement additional logic in the slow hub design. In this case debugging 
and diagnostic of the running system becomes less cumbersome. The slow hub design 
will have to convert fast commands addressed to standard I2C devices forth and back 
using 32-bit shift registers. 

A clock issue has to be resolved in a reliable fashion. For the sake of preventing 
TPLL from loosing lock to the LHC clock, two clock inputs have to be present in the 
slow hub design. After power up, the encoded clock is a default clock source for the slow 
hub. During this time no trigger decision are issued and TPLL can be addressed for status 
and PLL adjustments. A special command should be generated to switch slow hub to the 
TPLL clock source. The FEC has to use a clean clock to encode data sent to the front-
end. The slow hub has to be the source of the return clock to the FEC. This does require 
additional clock lines from the TBMs, but can be avoided by re-timing TBM data within 
the slow hub. 

In order to understand potential problems, as an example, let us consider single bit 
error in the serial data. The source of the error could be anything and is not important. 
Single bit errors are always present in communication links at some level. Table 1 shows 
possible results of a single bit error in different parts of the command for currently 
implemented bi-phase encoding and proposed fast encoding schemes. 
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If an error is present in the first data word (hub/port address), it creates either a 
non-existing address or modifies the address in such a way that it corresponds to the 
existing device. The latter one is a serious error and has to be detected. In the current 
provision, the first word is always returned to the FEC. In both cases (unless another 
error is present in the upstream data), the error will be detected and corrected by issuing 
another identical command. Addressing a wrong fast device with the fast protocol will 
not prevent it from communicating. If, on the other hand, the slow protocol is send to a 
fast device (ROC) or fast protocol is sent to a slow hub, it may potentially create a mess. 
Table 1 

Command word 
affected 

Bi-phase encoding Fast protocol 

Hub/port address Addresses wrong or non-existing 
device, slow command can be 
send to a fast device and vice 
versa 

Addresses wrong or non-existing 
device, makes no difference 
between fast and slow devices as 
all commands are fast 

Command Generates a 25 ns spike on the 
data line, can be fatal to a slow 
device 

Addresses non-existing or wrong 
internal register 

Data Generates a 25 ns spike on the 
data line, can be fatal to a slow 
device 

Sets incorrect or invalid data bit 
in a register 

If one bit error is present in bi-phase encoded data (command or data byte), it will 
create a 25 ns glitch on the data bus. It is not clear at present what that will do to the slow 
I2C device. In a worst case scenario, the addressed device may stop functioning and will 
require a hard reset. In the fast protocol, this error only makes the command illegal 
without disturbing the actual device. 

In a summary, a uniform fast protocol is much better and reliable approach for 
communicating with the Pixel front-end. 
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